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If S(n) is the position of the self-avoiding random walk in ~zd obtained by 
erasing loops from simple random walk, then it is proved that the mean square 
displacement E([S(n)[ 2) grows at least as fast as the Flory predictions for the 
usual SAW, i.e., at least as fast as n 3/2 for d = 2 and n 6/5 for d = 3. In particular, 
if the mean square displacement of the usual SAW grows like n ~aS- in d =  3, as 
expected, then the loop-erased process is in a different universality class. 

KEY WORDS:  Self-avoiding random walk; loop-erased walk; Laplacian 
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1. I N T R O D U C T I O N  

A self-avoiding walk (SAW) of length n on the integer lattice 77 a is an 
ordered sequence of points [x0=0,..., xn] with Ixi-xi 11 = 1 and xir 
for ir The study of SAWs arose in the study of polymer chains, and 
since has been of interest in mathematical physics. The first theoretical 
study of such walks dates back to Flory (see Ref. 3 and references therein 
for early heuristic and numerical work), who produced a nonrigorous 
argument to suggest 

~n 6/(a+2), d =  1, 2, 3 
([x"12) ~ Ln, d~>4 (1.1) 

Here ( . )  denotes expectation with respect to the uniform or counting 
measure on SAWs. In d =  4, a logarithmic correction was predicted. 
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After considerable heuristic and numerical work, the expected 
behavior of (Ix,12> is: n 3/2 for d =  2 (as Flory predicted); n 11s" for d =  3 (a 
little lower than Flory's prediction); for d = 4 ,  n(logn) =, where e =  1/4 
according to a renormalization group calculation; and for d > 4 ,  n. For 
d >  4, much progress has been made toward a rigorous proof. ~2'13) 

In Ref. 5, I introduced a new measure on self-avoiding walks for d >~ 3 
by erasing the loops from the paths of simple (unrestricted) random walks. 
The same process has recently appeared independently under the name of 
Laplacian random walk. (~~ For this process it was shown that for d > 4 ,  
(IXnl2> ~ cn, ~5) and for d = 4 ,  ([x.[ 2) .-~ b.n,  where b. grows at least as fast 
as (log n) 1/3 but no faster than (log n) 1/2, with (log n) 1/3 being the conjec- 
tured growth rate. ~6) Comparing the d = 4  result to the renormalization 
group calculation shows that the loop-erased process grows faster than the 
conjectured rate for the usual SAW. Here we discuss the loop-erased 
process for d =  2, 3 (the definition will have to be modified for d =  2) and 
prove that the exponents for the loop-erased process must be at least as 
large as the Flory exponents. More precisely, if S(n) denotes the position of 
the loop-erased SAW at time n, then for every e > 0, 

lira n~-3/2)+~E(I,~(n)12 ) = ~ ,  d =  2 
n ---* o o  

lim n(-6/5)+~E(lS(n)]2) = Go, d =  3 
n ---~ o o  

In particular, for d = 3 the mean square displacement of the process grows 
faster than n Lls ,  the current predicted value for the usual SAW. It is quite 
possible that the exponents for S will be larger than the Flory exponents. 
In fact, numerical work on walks of a small number of steps by Lyklema 
and Evertsz (11) suggest a preliminary guess of about 1.6 for d =  2. For 
d =  3, we expect that 1.2 will not be very far from the true exponent. 

We now give a quick definition of the loop-erased process for d>~ 3 
and show how to modify it for d =  2. See Ref. 5 for details. Let S(n)  be a 
simple random walk in ~d (d>~ 3) and let 

= min{j: 3i < j with S(i) = S(j)} 

a = the i for which S(i) -= S(z)  

Then we send S(n)  to the path 

~ l ( n )  = ~ S ( n  + (~ - ~)), 
O ~ n ~ a  

a ~ n < ~  
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S~(n) is a walk with one loop erased. We now perform the same process on 
S~(n), producing a new walk S2(n) and keep going, letting 

S(n) = lim Sj(n) 
j ~ o o  

The transience of the simple random walk in d ~> 3 allows us to make this 
definition. It can be shown that this definition is equivalent to the walk 
generated by assigning transition probabilities 

where 

P{S(n + 1 ) = x , + ,  [ IS(0),..., S(n)] = Ix o ..... x~]} 

(1.2) 
I l y -  xnf = l 

= Py{s ( j )  r {Xo,..., j = 0 ,  1, 2,... } 

For d =  2, we define the loop-erased process by using a variant of (1.2). Let 

~m(Y)=Py{S(j)q~ {Xo ..... x~}, j =  0, 1, 2,..., m} 

It can be shown (a) that for any finite set A c 7? 2, x, y r A, 

lim Px{S( j )q~A, j - -O ..... m} (1.3) 
, ~  Py{S(j)  e}A, j -  0,..., m} 

exists (assuming x and y are connected to oo). Hence we define the loop- 
erased process for d =  2 by the transition probability 

P{o~(n + 1 ) = x , + ,  ] IS(0),.,., S(n)] = [Xo,..., x,3} 

= J i m  ~m(x,+l )  q5 (y) (1.4) 
] y  - x~r = 1 

The above definition for d =  2 is not very practical. We will use a 
slightly different measure, suggested by an idea of Lyklema and Evertsz. (11) 
Let M be a (large) number and let 

R~t = {z = (zl, z2) ~ 7?2: [zi] ~ M}  

~?RM -- {z E RM: y r RM for some y, [y -- z[ = 1 } 

We can take simple random walks starting at the origin that end when they 
reach ORM. On this finite path, we do loop-erasing, and produce a finite 
self-avoiding walk of at least M steps. If n ~< M, we get a measure/~,,M on 
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n-step SAWs. In Section 5 we show that if/~n is the measure produced by 
(1.4), then 

/3.,.3(~o) = P.(oJ)[1 + O(1/~/n)] (1.5) 

where the O(.)  term is uniform over all n-step SAWs ~o. Hence, in order to 
estimate E(IS(n)I 2) we can use/~.,.3 rather than/~.  (or in other words, n 3 
looks like ~ for an n-step walk). 

In this paper, we will assume that the reader is familiar with basic 
results about S(n), as developed in Refs. 5 and 6. If we define S(n) with a 
finite cutoff, we get the same type of results with the natural modification 
(see Ref. 10); for example, if n is fixed and we let 

= 4, = inf{j i> 1: S(j) ~ •Rn3 } 

and consider the loop-erased process using finite walks stopped at time ~, 
we get the transition probability 

e{g(m + 1)= x,~+l I [3(0),..., ~(m)] = [x0,..., x,,]} 

= ~ . ( x ~ + l ) /  ~ ~,,(y) (1.6) 
/ ]y -  Xml = 1 

where 

~,,(y)=Py{S(j)q~ {Xo,..., Xm}, j = O ,  1,..., ~} 

The remainder of this paper contains two independent parts. Section 2 
gives a nonrigorous description of the problem, motivating the way in 
which the Flory exponents arise. Readers not interested in mathematical 
details may want to read this section only. The last three sections prove the 
main result, Theorem 3.1. It is assumed that the reader has read the 
previous work on the loop-erased process, in particular Sections 3 and 6 of 
Ref. 5 and Section 2 of Ref. 6. The basic outline of the proof is given in Sec- 
tion 3, reducing the problem to an estimate (3.1), which is proved in Sec- 
tion 4. Some technical questions about the simple random walk in 7/2 are 
discussed in Section 5: the justification that "n 3 = ~ "  for the self-avoiding 
walk, i.e., (1.5), is proven, as well as an estimate needed in Section 3. 

2. NONRIGOROUS DERIVATION OF THE EXPONENT 

Here we give an idea of how the Flory exponents appear for S(n). We 
will leave out details and make no attempt to be mathematically rigorous. 
We write f(n),.~g(n) if logf (n )  and log g(n) are asymptotic. The key 
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question to ask is how many of the first n points of a simple random walk 
remain after loops have been erased. If we let z(n) denote the number of 
points remaining, our goal is to find the e such that 

E(z(n))  ~ n ~' (2.1) 

If (2.1) holds, then n points of a self-avoiding walk should correspond to 
n 1/~ points of a simple random walk, i.e., 

E([ ~(n)l 2) ~ E(IS(nl/=)[ 2 ) ~ n ~/~ (2.2) 

If we let I ,  denote the indicator function of the event "the nth point is not 
erased," then (2.1) gives 

E(I , )  ,~n ~'-1 (2.3) 

One can show that for d = 2, 

P { S ( j )  r S(k) ,  0 ~< j ~< n, 2n ~< k ~< n 3 } ~ (log n) - 

and for d~> 3, 

P { S ( j ) r  O<<,j<~n, 2n<~k < or} >~c>0 

Hence we expect E(I,,2,),,~ E(I , ) ,  where I,,2, denotes the indicator function 
of the event "the nth point is not erased by time 2n." 

We consider a simple random walk of length 2n and define 

L o = sup{j~< 2n: S(O) = S(j)} 

and if L k < 2n, we define L k + ~ by 

Lk+l =sup{j~<2n: S ( L k +  1 ) = S ( j ) }  

Let/~ be such that L~ = 2n. Then 

2.=Lo+ (Cj-Lj 2) 
j = l  

and the kth point of the corresponding SAW is S(Lk).  What we have done 
is to split the walk into a sequence of loops with the property that the kth 
loop does not intersect the set {S(Lo) ..... S(Lk_I)}:  

I~" ~ I I / 'i 
/ "  ~ / I I 

I ~ / ' ~  ~L I J  ~ " , , , , ~  " 

It . . . /  X. A /  "t )=".~., ll~ 

O) = S  {Lo) o = 1 
Fig. 1. The dotted lines represent erased loops. The solid line is the remaining SAW. 

822/50/'1-2-7 
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We define pj by 

P0 ~ L0 

and for j >  0, 

{ Lt, - Lk 1 if j = L~_ 1 + 1 for some k 
p j  = 

0 otherwise 

Clearly, E(Z~"=o Pj) ~ 2n ~ n or 

E(p.) ~ 1 (2.4) 

We now try to estimate E(p.). If we erase loops from the path only 
through time n, we get a self-avoiding path starting at 0 and ending at S(n). 
Let A. denote the (random) set of points in this path and .4. = A.\{S(n)}.  
Then p.  :~ 0 if and only if S(k) r A.,  n + 1 <~ k <~ 2n, and {p. = m + 1 } is the 
se t  

{S(k) r .4., n + 1 ~< k ~< 2n; S(n + m) = S(n); S(k) ~ S(n), m + 1 <~ k <~ 2n} 

What is the probability of this set? It is standard that P { S ( n + m ) =  
S(n)} .~m -a/2. The remaining conditions essentially require the path to 
avoid .//. three times 

Fig. 2. 

S(n)= S(n+m} 
The dotted lines represent the paths of S(k) for k > n. If p ,  ~ O, then this does not 

intersect An, the SAW up to S(n). 

[that is for small i, we need S ( n + i ) r  S ( ( n + m ) - i ) r  and 
S((n + m)+ i)r This suggests that given _~., a good estimate for the 
probability would be (for m not too small) 

m-a/2[F.(S(n), A.) 3 ] (2.5) 

Here F. ( x ,A )=Px{S ( j ) r  j = l  ..... n}. We have clearly made only an 
approximation to the probability, and making some of these ideas rigorous 
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is the role of Lemma 4.1 of this paper. However, if we accept (2.5), we get 
by summing that 

E(pn I A,) ~ n 2- a/2[Fn(S(n), An) 3 ] 

or  

E(pn) = n 2 d/aE[Fn(S(n), An) 3] 

By (2.3), this is of order 1, so we get 

E[ Fn( S(n ), An) 3] ~ n a/2-2 (2.6) 

In this paper we prove one direction of (2.6), 

E[Fn(S(n), An) 3 ] < n a/2-2 (2.7) 

but we conjecture, in fact, that (2.6) holds. 
The quantity we are interested in is E(In,2~), which is E(Fn(S(n), An)). 

It is not clear how to take the power outside of the expectation in (2.6); in 
fact, we do not know (even from a nonrigorous point of view) whether 

E[Fn(S(n), An)3]  ~ {E[Fn(g(n) ' An)] }3 (2.8) 

If (2.6) and (2.8) were true, then we would have 

E(Fn(S(n), An)) ~nd/6 2/3 

which gives, by (2.3), ~ = d/6 + 1/3, or by (2.2), 

E(I ~(n)l 2) ,~n a/(a+2) 

which is the Flory prediction. For positive random variables X, E(X 3)/> 
[E(X)]  3, so (2.7) allows us to prove rigorously 

<<. d/6 + 1/3 

But determining the exact exponent is still an open question. 
There is an open problem about simple random walks that is similar 

to this. Let Hn be all the points of a random walk path of length n (i.e., do 
not erase loops) and let 

/ 4 .  = Fn(0 , /Z~  

E(Hn) is the probability that the paths of two independent random walks 
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starting at 0 do not intersect. The asymptotic behavior of E(Hn) for d = 2, 3 
is unknown, although it can be shown that 

I 
n 1, d = 2  

E(H 2) ..~ n-  1/2, d= 3 
(log n) 1, d =  4 

(see Ref. 7 and references therein for a discussion of this problem). For 
d = 4  it can be shown that E(H2)~ [E(Hn)] 2 and hence that E(Hn)~ 
(log n) 1/2 For S(n) in d = 4 ,  it was shown that E(I 3) ~ (log n) 1 and it 
was from analogy with this problem that the conjecture E(I , )~  (log n)-1/3 
was made, i.e., that E(l~q(n)[ 2) grows like n(log n) 1/3. For d =  2, 3, it is not 
clear whether one should expect E(Hn)2~E(H2); in fact, for d =  1, 
E(H,) 2 ~ E(H~). Determining the exponent for E(I,) seems at least as 
hard as finding the exponent for E(Hn); however, if E(H,)2.~E(H~), we 
would expect that E(In)3 ~ E(I3~). 

3. T H E  M A I N  T H E O R E M  

If A c Z d, x E Z d, and S(n) is simple random walk in Z d, we define 
Fn(x, A )=Px{S ( j ) r  j =  1,..., n}. Now, let S be simple random walk 
starting at O, and for fixed j, consider S(i), 0 <~ i <.j. On this finite walk we 
can erase loops, and get a self-avoiding walk of length no more than j, 
starting at 0 and ending at S(j). We call the (random) set of points in this 
walk Aj. If n >~ j, we let Ij, n be the indicator function of the event "the j th  
point is not erased by time n," or, more precisely, the event 

{S(k)r k = j +  1,..., n} 

Clearly, for fixed j, the sets decrease with n. Also, 

E(Ij,,) = E(F, j(S(j), Aj)) 

In Section 4 we will prove our main estimate that for d = 2, 3, any e > 0, 

E(Ij,2,) <~ o(n~d+ 2)/6 + ~) (3.1) 
j = O  

Here we show how (3.1) gives our main result: 

T h e o r e m  3.1. If S(n) is loop-erased, self-avoiding random walk 
and e > 0, then 

lim n-3/2+~E(JS(n)]2) = 0% d = 2  (3.2) 
n ~ o o  

lim n-6/5+~E(],~(n)l 2) = ~ ,  d =  3 (3.3) 
n ~ o o  
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Proof. For  d =  3 we assume that  S(n) has no cutoff; for d =  2, let 

~, = inf{j..-> 1 : S ( j ) ~ R n 3  } 

and we will assume that  S is cut off at in,  as described in Section 1 (and 
hence is a slightly different process for each n). By (1.5), it is sufficient to 
prove (3.2) for this cutoff walk. Fix n, 5~, and let 

on(m ) = sup{j:  S(m) = S( j )}  

and let rn be the inverse of o .  in the sense 

zn(j) = rn if On(m)<~j<an(m+l)  

Then 

S(n) = S(an(n)) (3.4) 

z,(en(m)) = m, all m (3.5) 

z n ( j ) - - z n ( j - -  1)6 C 0, 1} 

The indicator function of the event { z , ( J ) - z n ( J - 1 ) =  1} is exactly Ij,~, if 
d = 2  or Ij,~ if d = 3 .  Hence,  for any k<~n 2, by (3.1), for every e > 0 ,  

k 
E(%(k)) <~ ~ E(Ij,r + 1 

j = o  

k 

Z 
j=O 

= O(kIa+ 2)/6 + e) 

If we apply this to k = l n  6/(d+2)-~, we see that  for every e > 0  

P{zn(�89 = o(1), n ~ 

F rom  this and (3.5) we see for e > 0, 

lim P{O'n( r / )  ~< r/6/(d+ 2) ~} = 0 (3.6) 
n ~ o o  

We now use an estimate for simple r andom walk: for every e > 0, there 
exists a c, > 0 such that 

P{IS(j)[ 2 <~ n 6/(d+2)-2~ for some n 6/(d+ 2)-e ~<j~  en} 

~< 1 - c , ,  d = 2  

P{IS(j)[ 2 ~< n6/(d+ 2) - 2~ for s o m e  r/6/(a+ 2 ) - e  ~< j < O(3 ) 

~ < l - c , ,  d = 3  
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The result for d =  3 is easy, using transience of the simple random walk 
[one can estimate the probability by the expected number of j with 
[S(j)[2~n 6/(d+2)-ze] and in fact the probability goes to 0 as n ~ ~ .  For  
d = 2 ,  it is a little more delicate; we prove it in Lemma 5.4(b). These 
estimates combined with (3.4) and (3.6) give the theorem. 

4. THE ESTIMATE ON A M O U N T  ERASED 

Here we prove (3.1) using the ideas in Refs. 5 and 6. Our goal is to 
estimate 

For any j, let 

j=O 

Pj,2, = [inf{k > j :  Ik,2, = 1 } ] - j  

Then it is easy to see by telescoping that 

~-~ Ij_ l,2nPj,2 n ~ 2n + 1 
j = 0  

(4.1) 

where I_ 1,2, = 1. The term &,2, can be thought of as the size of the loop at 
time j. The results of Section 6 of Ref. 5 state that the conditional 
distribution of &,2n given {Ij 1,2, = 1 } and Aj is the size of a loop at S(j) 
conditioned not to enter the set Aj\{S(j)}.  

Let us make a more precise statement of this. Let A c Z a, 0 6 A, and 
let S(n) be simple random walk starting at 0. Let 

AAm=SUp{j <~ m: S ( j ) =  0, S(k)r A, k=  1, 2 ..... j}  

Then, conditioned on Aj and {Ij_ ~,2, = 1 }, Pj,2n has the same distribution 
as Ark_j+ 1, where 

['j= { y - S ( j ) :  y~Aj ,  y # S ( j ) }  

We state a lemma for general A. 

I . e m m a  4.1. For  every e > 0 ,  there exists a c~>0 such that for 
A c 77 a ( d = 2 ,  3) with F,(O, A)>~n -3, OCA, 

E(A~) >~ c~nZ-a/2-~[F,(O, A)] 2 (4.2) 



Loop-Erased Self-Avoiding Random Walk 101 

Before proving the lemma, let us show how this gives (3.1). If we let Jj,, be 
the indicator function of {F,(S(j),  Aj)>~n 3}, Lemma 4.1 gives 

E(pj,2. [Ij 1,2n = 1, Jj,n = 1, Aj)  ) C~Fl 2 -  a/2-~F.(S(j), A j) 2 

and hence 

E(Ij 1,2Jj,,,&,2. ]Aj) >~ Gn 2-a/2- ~F.(S(j), As) 3 Jj, n 

and 

E(Ij_ 1,2nJj,,,pj,2,,) >~ Gn 2-a/2 "E(F~(S(j), A j) 3 Jj,.) 

We write Fj,. = F~(S(j), A j). Then 

i E(/j,2.) ~< ~ E(Fj,~) 
j = o  j = o  

(') <. e(Jj , .r j . )  + O 7 
j = 0  

j = 0  

~< ( n + l )  2 ~ E(Jj.F):~)]I/3+O - j  
j = 0  

~<(n+1)2/3 ~. n(a/z)_ 2 + ~ 1 E(Ij + 0  
t _ j=  0 Ce 

But by (4.1) 

Hence 

~' .E(Is-  1,2.&.2n) ~< 2n + 1 
j = 0  

E(Ij,2,) <<, O(n (d+ 2)/6 +~/3) 
j = o  

which gives (3.1). 
To prove Lemma 4.1, let e > 0 be given. It suffices to show the result 

for n sufficiently large. By standard exponential estimates for the simple 
random walk (see, e.g., VII, w of Ref. 12) there exists a 6 = 6(e)> 0 such 
that 

P{ IS(j)[ > nl/2 +'/a for some 1 <~ j <~ n} 

<~ O(e  -ha) = o(1/n  3) 



102 Lawler 

Choose n sufficiently large so that the above probability is less than 1/(2n3). 
Let 

pa(j, x) = eo{S(j) = x, S(i) r A, i = 1, 2 ..... j}  

Then, if F,(0, A)>~n -3, we have 

pA(j,x)>~ �89 A) 
Ix[ ~< n 1/2 + F,/d 

But 

pA(2j, 0)= ~ pA(j, x)2 
X ~ Z  d 

>~ ~ [pA(j, x)]2 
Ix ] <~ hi~2 + e/d 

>~ Kan-a/2-~[ F,(O, A)] 2 

Also 

P{A~ = 2j} >/pa(2j, 0) Po{S(j) # O, j = O, 1 ..... n } 

~K3 pA(2j, 0), d = 3 
>~ ~K2(logn)-l pA(2j, O), d = 2  

Therefore, 

n/2 

E(AJ) >7 2 P{ AA = 2j}(2j) 
j = 0  

f O(n 2 d/2 ~), d = 3  

~[O(n  2-a/2 ~(logn) 1), d = 2  

Since e > 0 was arbitrary, we get (4.2). 

5. R A N D O M  W A L K  IN T W O  D I M E N S I O N S  

Throughout  this section S(n) denotes a simple random walk in Z 2. Let 
x = (Xl, x2) ~ Z 2 and 

~Po{S(2n)=x}, Xl+X2 even 
P ( n ' x ) = { P o { S ( 2 n + l ) = x } ,  xl +x2  odd 

The asymptotic behavior of p(n, x) is well understood. We summarize in 
Lemma 5.1 the facts we will need; all of these facts can be derived from the 
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local central limit theorem (see Chapter 7 of Ref. 14) and hence we omit the 
proof. Throughout this section we will use O(-) and o(-) notation. We set 
the following conventions: the error terms describe behavior as n-~ oe; 
they are uniform over all w, x, y, z ~ Z 2 and A c Z2; they may depend on 
exponents (denoted by ~, fl, V, fi, e) and the constant K. 

L e m m a  5.1. For every a, fl, e > 0, K >  0: 

(a) p(n, 0)-- (1/nn)[1 + O(1/n)]. 

(b) For all n and x, p(n, x) <~ p(n, 0). 

(c) For Ix[ <~Kn ~ and m>~n 2~+~, 

p(m, x)-=p(m, 0)[1 + o(1)] 

(d) There exists 6=fi(fl, e)>O such that if Ix] >>.n (B+~)/2, p(n ,x)= 
O(e-'a).  

For any a > O, let 

and 

R==R~,,,= {(zl, z2)e7/2: Izil ~<n ~} 

~?R~= {zeRo: y r  R~ for some [ y - z l  = 1} 

For x, y e  7/2, rn~ <~rn 2, let 

m2 

Vy(m,, m : ) =  ~ I{S( j )= y} 
j - - m l  

(here I denotes indicator function) and 

m2 

g(x, y, ml ,m2)=Ex(Vy(ml ,m2))= ~ Px{S(j)= y} 
j =  ml 

L e m m a  5.2. For a n y e < f l < y , K > 0 :  

(a) If [x[~>n e and yeR=, 

g(x, y, 0, Kn 27) <~ 1 (~ _ fl)(log n)[1 + o(1 )] 

(b) If x, y E R=, then 

g(x, y, 0, Kn 27) >~ 1_ (~ _ e)(log n) [ 1 + o( 1 ) ] 
7~ 



104 Lawler 

ProoL Let e > 0. Then, using Lemma 5.1, 

(a) 2g(x, y, 0, n 2r) < ~ p(j, x - y) 
O <~ j <~ Kn27 

<~ n 2~- 2~o(e -~)  + ~ p(j,  O) 
( 1/2)n2#- 2~ < j <~ Kn2,/ 

2 
= o ( 1 ) + -  ( logn)(y-- f l+e)[1  +o(1) ]  

7~ 

(b) 2g(x, y,O, Kn2~)>~ ~ p( j ,O)[ l  +o(1)] 
n 2(~ + ~') ~< j <~ ( 1/2)n 2~' 

2 
= -  (log n)(y - c~ - e)[1 + o(1)] 

Since e > 0 is arbitrary, we get the result. 

I . emma  5.3. For a n y 0 < ~ < f l < 7 ,  K > 0 ,  i f x C R a ,  

Px{S(j )  r R~, j = 1 ..... Kn 2~ } >~ [1+o(1)] 

ProoL Consider 

By Lemma 5.2(a) 

W =  ~ Vy(O, 2KN 2~) 
y e  R= 

E(W) ~< IR~[ 1 (7 - fl)(log n)[1 + o(1)] 

where I[  denotes cardinality. Let q= in f{ j~> l :  S( j )ER~} .  Then Lem- 
ma 5.2(b) combined with a standard Markov argument gives 

E( WI rl <~ K N  2~) >~ IR~I 1 (7 - cQ(log n)[1 + o(1 )] 
7~ 

Since 

E(W) >~ E( Wl q < K N  2~ ) P { rl <~ K N  2~ } 

we get 

7-/~ I-1+o(1)3 P { q <~ KN2~ } <<. - ~ ~  
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L e m m a  5.4. Let 0 < ~ < fl < 7 < oo and ~ = inf{j~> 1: S(j) ~ OR~}. 

(a) I f x ~ R ~ ,  

P~{IS(j)I qI R ~ , j =  1 ..... ~} > f l -ot  [1 + o(1)] 

(b) 

Proof. 
such that 

But 

Po{ [S(j)[ q~ R~, j = n 2~ ..... ~ } >~ f l - ~  [1 + o(1)] 
7-0~ 

(a) Let e > 0. By the central limit theorem we can find K~ 

Px{ IS(K~n2~)I r R~} > (1 -- e)[1 + o(1)] 

P x { S ( j ) r  1,..., ~} 

>~ Px{ S(j) r R~, j =  1,..., K~n 2~, S(K~n 2"~) r RT } 

(b) Let e > 0 .  By the central limit theorem, P{IS(n2[3)] <~n ~-~} goes 
to zero. Hence we can apply part (a). 

If A t 7 / 2 ,  IA[ < o0, let 

z~4 = inf{j >~ 1: S(j) ~ A } 

Let .,~= { y e A :  there exists a path from y to ov avoiding A}. By Ref. 4, if 
x, y ~ A ,  

lim P~{rA >M} 
M ~ 0o Py{'C4 > M}  

exists. We will need a slightly stronger version of this result, which gives a 
rate of convergence. 

k e m m a  5.5. Let A c R 1 ,  
s( j)  ~ ~R3 }, 

lim Px{% > M} 
~ 0o Py{rA > M }  

x, y E R l c ~ A .  Then, if r  

Py{~A > ~} 
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Proof. For fixed n, it is routine to prove 

lim Px{rA > 2M[ zA > M} = 1 
m ~ c ~  

and hence Px{ZA > 2M} ~ Px{z, > M}. Similarly, one can show 

lim Px{zA>M}_ lim P z { ~ A > M + ~ }  

Py{~>~} Py{~>M+~I~A>r 

In Lemma 5.8 we show that for z ~ 3R3, [ (1)] 
Px{S(~)=ZIzA>~}=Py{S(~)=ZIZA>~} 1 + O  ~ (5.1) 

which implies, for every M > O, [ (1)] 
Px{~>M+~IrA>~}=P,{rA>M+r162 1+O n- ~ 

This gives the result. (We have assumed the result of Ref. 4, i.e., that the 
limit exists. A little more work could be done to prove this independently.) 

The key remaining step is (5.1), which intuitively states that a random 
walk, by the time it hits c3R3, has forgotten its starting point. The uncon- 
ditioned hitting distribution was discussed in Lemma 4.4(a) of Ref. 8 using 
a result in Ref. 1. We state this as a lemma: 

Lernma 5.6. If x e R=, then for z e 63R3, 

e ~ { s ( ~ ) = z }  = P 0 { S ( ~ ) = z } [ 1  + O(n=-3)] 

We emphasize here that the O(-) is independent of x ~ R~ and z ~ OR3. 

Lemma 5.7. IfAcR~ and x~R3/z\R4/3, then for z~OR3 

Px{S(~)=zl~ <zA}=Px{S(~)=z}[l +O(n 3/2)3 

Proof. By Lemma 5.4(a) 

P{~<~A} ~>~[1 +O(1)3 (5.2) 

But, 

Px{S(~)=z} =Px{S(~)=z[~> ~a} P{~>ra} 

+ Px{S(r zlr < r P{r < r (5.3) 
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By Lemma 5.6, for y ~ R3/2, 

Py{S(~) -- z} = Po{S(~) = z} [1 + O(n --3/2)] 

Since A c R3/2, an easy Markov argument gives 

ex{S(~) = z I~ > -cA } = Po{S(~) = z} 1-1 + 0(n-3/2)] 

= Px{S(~) = z} [1 + 0(n-3/2)] 

Using this with (5.2) and (5.3) gives the result. 

L e m m a  5.8. With the assumptions of Lemma 5.5 

[ (')] P x { S ( ~ ) = z [ % > { } = P y { S ( { ) = z ] % > ~ }  1 + O  

Proof. 
for z ~ 63R3, 
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(5.4) 

Let t /= inf{j ~> l: S(j) e O R 3 ~  2 }, ~0 = "c A A 4, 0 = -cA A r/. T h e n  

P~{S(~o)=z} = T, 
w E OR3/2 

By Lemma 5.7, for w e ~R3/2, 

Also, 

Px{S(O) = w} ew{s(~o) = z} 

E (1)1 ew{S(~o)=z}=eo{S(~)=z} P~{-cA>e.} 1+o 7~ 

w E ~R3/2 

Hence 

Px{S(~o) = z} = Px{ZA > ~} Po{S(~) = z} [1 + O(n-3/2)] 

A similar expression holds for y, and hence we have (5.1). 
Finally, we note that from Lemma 5.5 we get (1.5). Using (1.4) and 

(1.6), we see at each step the two transition probabilities agree up to order 
0(1/n3/2). Hence, for any n-step co, 

I (')] Pn,.~(co) = Pn(co) ( I  1 + o n- ~ 
j = l  
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A C K N O W L E D G  M ENTS 

This  r e sea rch  was  s u p p o r t e d  by N S F  g r a n t  D M S - 8 5 - 0 2 2 9 3  a n d  an  

Alf red  P. S l o a n  R e s e a r c h  Fe l lowsh ip .  
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